

tML® - tde Modular Link

tML ${ }^{\circledR}$ is a patented, modular cabling system consisting of the three key components module, trunk cable and rack mount enclosure. The system components are 100 percent manufactured, pre-assembled and tested in Germany. They enable plug-and-play installation on site - especially in data centres, but also in industrial environments - within the shortest possible time. Heart of the system are the rear MPO/MTP® and Telco connectors, which can be used to connect at least six or twelve ports at a time. Depending on the module configuration, transfer rates of up to 200G are currently possible with SR4. The fibre optic and TP modules can be used together in a module carrier with a very high port density. The tde offers its $\mathrm{tML}{ }^{\circledR}$ cabling system as a proven tML^{\oplus} standard system and in the highly innovative variants $\mathrm{tML}{ }^{\circledR}$ Xtended, tML® 24 System and now tML ${ }^{\oplus} 32$ System for extreme scalability and very easy migration to higher transmission rates such as 40G, 100G, 200G and 400G.

The utility patent protected $\mathrm{TML}{ }^{\otimes} 24$ - FO Module MPO/MTP®is intended for the installation in the tML® Rack Mount Enclosure 3U (for $17 \times$ Modules). The module configuration guarantees an extremely easy migration from 1GbE to 100GbE because there can always be worked on both sides with uniformly configured modules and patch cables. The tML® 24 module can be used only in conjunction with the $\mathrm{tML}{ }^{\circledR} \mathrm{HD}$ patch cord.

i

tde ${ }^{\circledR}$ trans data elektronik GmbH

Headquarter address:
Lingener Str. 2
D-49626 Bippen/Ohrte
Tel.: +49543595110
Fax.: +495435951132
Sales office address:
Prinz-Friedrich-Karl-Str. 46
D-44135 Dortmund
Tel.: +49 23188056113
Fax.: +49 23188056115
info@tde.de I www.tde.de
tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex 50/125 μ OM4

Technical Data

The end faces of the connectors are optimized by means of Lasercleaving and machine polish. The MPO/MTP®plug has a defined fiber height of $1-3.5 \mu$. The max. adjacent fiber height difference is $0.2 \mu \mathrm{~m}$ and for all fibers $0.3 \mu \mathrm{~m}$. All system components (modules, trunk cables and patch cords) are co-ordinated for the reaching of the performance particularly. The module is marked with sequential serial number and article number. The modules are ROHS compliant.

Entry	$1 \times$ MPO/MTP®Female Adapter (red) back
Exit	$6 \times$ LC Quad Adapter (magenta) front
Tests	Interferometer, Insertion Loss, Return Loss and Visual Final Inspection; all measured values are electronically archived
	QS-Managementsystem ISO 9001, ISO 14001 and TL 9000

Box	Galvanized steel sheet
Front Panel	Stainless steel

FO Adapters

Type	MPO/MTP®
Application	Singlemode / Multimode
Design	without Flange
Connector style	SC Simplex
Key Orientation	Type A, Key up/down
Color	Red
Material	Plastic
Sleeve	--
Shutter	--
Standards	IEC 61754-7
TIA 604-5	
Manufacturer	US Conec

FO Adapters

Type	LC Quad
Application	Multimode OM4
Design	with flange
Footprint	SC Duplex
Color	Magenta
Material	Plastic
Sleeve	Zirkonia Staight Split
Shutter	--
Manufacturer	tde

trans data elektronik GmbH net. work. solution. made in Germany
tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex 50/125 μ OM4

FO Connectors

The end faces of the connectors are optimized by means of Lasercleaving and machine polish. The MPO/MTP® plug has a defined fiber height of $1-3.5 \mu$. The max. adjacent fiber height difference is $0.2 \mu \mathrm{~m}$ and for all fibers $0.3 \mu \mathrm{~m}$.

Connector

Type	MPO/MTP ${ }^{\circledR}$ Female Push Pull Locking (magenta)
Ferrule	24 Fiber MM Elite ${ }^{\circledR}$ ferrule, PPS
Boot colour	Red
Temperature range	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Manufacturer	tde/US Conec

Optical Performance

Fiber	Type	Wavelength	Insertion loss typ.	Insertion loss max.	Return loss min.
$50 / 125 \mu$ OM4	MPO/MTP	850 nm	$\leq 0.12 \mathrm{~dB}$	0.25 dB	35 dB

FO Connectors

Connector Type	LC Unibody Simplex
Housing	Plastic, Magenta
Ferrule	Zirkonia Staight Split, Spring-loaded Axially
Ferrule Hole	126μ
Mating Cycles	1.000
Operating Temperature	$-40^{\circ} \mathrm{C}$ up to $+75^{\circ} \mathrm{C}$
Strain Relief to	100 N
Manufacturer	tde

Optical performance

| Fiber | Type | Wavelength | Insertion loss typ. | Insertion loss max. | Return loss min. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $50 / 125 \mu$ OM4 | LC | $850 / 1300 \mathrm{~nm}$ | $\leq 0.07 \mathrm{~dB}$ | 0.15 dB | 35 dB |

FO Fiber

Type	Corning ClearCurve ${ }^{\circledR} 50 / 125 \mu$ OM4 multimode fiber
Optimized Data Rate over Distance	$40 / 100$ Gb over $170 \mathrm{m*}$
	$10 \mathrm{~Gb} / \mathrm{s}$ over 550 m
	$1 \mathrm{~Gb} / \mathrm{s}$ over 1100 m
Standard Compliance	ISO/IEC 11801: type OM4 fiber**
	IEC 60793-2-10: type A1a.3 fiber**
	TIA/EIA: 492AAAD
	ITU: ITU G651.1

trans data elektronik GmbH net. work. solution. made in Germany
tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex 50/125 μ OM4

*	Distances specified in the 40G/100G per IEEE 802.3ba standard are 150 m on OM4 and 100 m on OM3; Corning fibers are manufactured to tighter dispersion specifications and thereby support the extended distances shown in the table (assuming cable attenuation $\leq 3.0 \mathrm{~dB} / \mathrm{km}$ and same 1.0 dB of connector loss for OM3 that the standard requires for OM4)
**	Assumes IEC draft standard is harmonized with 492AAAD which was approved by TIA

Optical Specifications

Bandwidth	High Performance EMB* (MHz.km): 4700 at 850 nm only Legacy Performance EMB** (MHz.km): 3500 at $850 \mathrm{~nm} / 500$ at 1300 nm
Attenuation	At 850 nm max. $\leq 2.3 \mathrm{~dB} / \mathrm{km}$ At 1300 nm max. $\leq 0.6 \mathrm{~dB} / \mathrm{km}$
Macrobend Loss	Mandrel Radius (mm): 37.2 / $15 / 7.5$ Number of Turns: $100 / 2$ / 2 Induced Attenuation (dB) at $850 \mathrm{~nm}: \leq 0.05 / \leq 0.1 / 0.2$ Induced Attenuation (dB) at $1300 \mathrm{~nm}: \leq 0.15 / \leq 0.3 / \leq 0.5$
Numerical Aperture	0.200 ± 0.015
*	Ensured via miniEMBc, per TIA/EIA 455-220A and IEC 60793-1-49, for high performance laser-based systems (up to $10 \mathrm{~Gb} / \mathrm{s}$)
**	OFL BW, per TIA/EIA 455-204 and IEC 60793-1-41, for legacy and LED-based systems (typically up to 100 Mb / s)

Dimensional Specifications

Core Diameter	$50.0 \pm 2.5 \mu \mathrm{~m}$
Cladding Diameter	$125.0 \pm 1.0 \mu \mathrm{~m}$
Core-Clad Concentricity	$\leq 1.5 \mu \mathrm{~m}$
Cladding Non-Circularity	$\leq 1.0 \%$
Core Non-Circularity	$\leq 5.0 \%$
Coating Diameter	$242 \pm 5 \mu \mathrm{~m}$
Coating-Cladding Concentricity	$<12 \mu \mathrm{~m}$

Environmental

Enviromental Test	Test Condition	Induced Attenuation $850 \mathrm{~nm} \mathrm{\&} 1300 \mathrm{~nm}(\mathrm{~dB} /$ $\mathrm{km})$
Temperature Dependence	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	≤ 0.10
Temperature Humidity Cycling	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and 4% to $98 \% \mathrm{RH}$	≤ 0.10
Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.20
Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.20
Damp Heat	$85^{\circ} \mathrm{C}$ at $85^{\circ} \mathrm{RH}$	≤ 0.20
Operating Temperature Range	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Mechanical Specifications

Proof Test	The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}\left(0.7 \mathrm{GN} / \mathrm{m}^{2}\right)$.
Length	Fiber lengths available up to $17.6 \mathrm{~km} / \mathrm{spool}$.

trans data elektronik GmbH net. work. solution. made in Germany
tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex 50/125 μ OM4

Performance Characterizations

Refractive Index Difference	1%
Effective Group Index of Refraction $850 \mathrm{~nm}: 1.480$	
	$1300 \mathrm{~nm}: 1.479$
Fatigue Resistance Parameter (nd)	20
Coating Strip Force	Dry: $0.6 \mathrm{Ibs}(2.7 \mathrm{~N})$ Wet: 14 days in $23^{\circ} \mathrm{C}$ water soak: $0.6 \mathrm{lbs}(2.7 \mathrm{~N})$ Cromatic DispersionZero Dispersion Wavelength $\left(\lambda_{0}\right): 1295 \mathrm{~nm} \leq \lambda_{0} \leq 1315 \mathrm{~nm}$ Zero Dispersion Slope $\left(\mathrm{S}_{0}\right): \leq 0.101 \mathrm{ps} /\left(\mathrm{nm}^{2 *} \mathrm{~km}\right)$

Product variants \& accessories

Art.-No.	Description
TML-T12LCADK/M2-09E	tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC APC Duplex $9 / 125 \mu$ OS2
TML-T12LCDK/M2-09E	tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex $9 / 125 \mu$ OS2
TML-T12LCDK/M2-50G3	tML® 24 - FO Module 5HP 1x 24F MPO/MTP® /12x LC Duplex 50/125
TML-T12LCDK/M2-50G4	tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex 50/125
TML-T12LCDS/M2-50G5	tML® 24 - FO Module 5HP 1x 24F MPO/MTP®/12x LC Duplex w. shutter 50/125

