net. work. solution. made in Germany

tML® - tde Modular Link

tML ${ }^{\circledR}$ is a patented, modular cabling system consisting of the three key components module, trunk cable and rack mount enclosure. The system components are 100 percent manufactured, pre-assembled and tested in Germany. They enable plug-and-play installation on site - especially in data centres, but also in industrial environments - within the shortest possible time. Heart of the system are the rear MPO/MTP® ${ }^{\circledR}$ and Telco connectors, which can be used to connect at least six or twelve ports at a time. Depending on the module configuration, transfer rates of up to 200G are currently possible with SR4. The fibre optic and TP modules can be used together in a module carrier with a very high port density. The tde offers its $\mathrm{tML}{ }^{\circledR}$ cabling system as a proven $\mathrm{tML}{ }^{\oplus}$ standard system and in the highly innovative variants tML^{\circledR} Xtended, tML® 24 System and now tML® 32 System for extreme scalability and very easy migration to higher transmission rates such as 40G, 100G, 200G and 400G.

The tML® Breakout Module MPO/MTP®is intended for the installation in the tML® Rack Mount Enclosure 1U (for $8 \times$ Modules).

i

tde ${ }^{\circledR}$ trans data elektronik GmbH

Headquarter address:
Lingener Str. 2
D-49626 Bippen/Ohrte
Tel.: +49543595110
Fax.: +495435951132
Sales office address:
Prinz-Friedrich-Karl-Str. 46
D-44135 Dortmund
Tel.: +49 23188056113
Fax.: +49 23188056115
info@tde.de I www.tde.de
trans data elektronik GmbH net. work. solution. made in Germany
tML® - FO Breakout Module MPO/MTP® with Pins/4x LC APC Duplex 9/125 μ OS2, LR4

Technical Data

The end faces of the connectors are optimized by means of Lasercleaving and machine polish. The MPO/MTP®plug has a defined fiber height of $1-3.5 \mu$. The max. adjacent fiber height difference is $0.2 \mu \mathrm{~m}$ and for all fibers $0.3 \mu \mathrm{~m}$. All system components (modules, trunk cables and patch cords) are co-ordinated for the reaching of the performance particularly. The module is marked with sequential serial number and article number. The modules are ROHS compliant.

Entry	$1 \times$ MPO/MTP®Male Adapter (green) front $^{\text {Exit }}$
Tests	$4 \times$ LC APC Duplex Adapter (green) front
	Interferometer, Insertion Loss, Return Loss and Visual Final Inspection; all measured values are electronically archived
	QS-Managementsystem ISO 9001, ISO 14001 and TL 9000

Box	Galvanized steel sheet
Front Panel	Stainless steel
Dimensions	$110 \times 108 \times 20 \mathrm{~mm}$

FO Adapters

Type	LC Duplex
Application	Singlemode OS2 APC
Design	One-Piece without flange
Connector style	SC Simplex
Color	Green
Material	Plastic
Sleeve	Zirkonia Staight Split
Shutter	--
Manufacturer	tde

FO Connectors

Connector Type	LC APC Unibody Simplex
Housing	Plastic, Green
Ferrule	Zirconia Straight Split, Spring-loaded Axially
Ferrule Hole	$\leq 0.6 \mu$
Ferrule Concentricity	500
Mating Cycles	$-40^{\circ} \mathrm{C}$ up to $+75^{\circ} \mathrm{C}$
Operating Temperature	100 N
Strain Relief to	tde
Manufacturer	

trans data elektronik GmbH net. work. solution. made in Germany
tML® - FO Breakout Module MPO/MTP® with Pins/4x LC APC Duplex 9/125 μ OS2, LR4

Optical performance

Fiber	Type	Wavelength	Insertion loss typ.	Insertion loss max.	Return loss min.
$9 / 125 \mu$	LC APC	$1310 / 1550 \mathrm{~nm}$	$\leq 0.10 \mathrm{~dB}$	0.18 dB	75 dB

FO Adapters

Type	MPO/MTP®
Application	Singlemode OS2 APC
Design	without Flange
Connector style	SC Simplex
Key Orientation	Type A, Key up/down
Color	Green
Material	Plastic
Sleeve	--
Shutter	--
Standards	IEC 61754-7
	TIA 604-5
Manufacturer	US Conec

FO Connectors

The end faces of the connectors are optimized by means of Lasercleaving and machine polish. The MPO/MTP® plug has a defined fiber height of $1-3.5 \mu$. The max. adjacent fiber height difference is $0.2 \mu \mathrm{~m}$ and for all fibers $0.3 \mu \mathrm{~m}$.

Connector

Type	MPO/MTP ${ }^{\circledR}$ APC Male Push Pull Locking with Elite Pins (green)
Ferrule	12 Fiber SM Elite ${ }^{\circledR}$ ferrule, PPS
Boot colour	Black
Temperature range	$-40^{\circ} \mathrm{C}$ bis $+75^{\circ} \mathrm{C}$
Manufacturer	tde/US Conec

Optical Performance

Fiber	Type	Wavelength	Insertion loss typ.	Insertion loss max.	Return loss min.
$9 / 125 \mu$ OS2	$\mathrm{MPO} / \mathrm{MTP}^{\circledR} \mathrm{APC}$	$1310 / 1550 \mathrm{~nm}$	$\leq 0.10 \mathrm{~dB}$	0.20 dB	75 dB

FO Fiber

Type	Corning SMF-28e $+{ }^{\circledR} 09 / 125 \mu \mathrm{OS} 2 \mathrm{G} .652$. D singlemode fiber
Maximum Attenuation	At $1310 \mathrm{~nm} \operatorname{max.} 0.33-0.35 \mathrm{~dB} / \mathrm{km}$
	At $1383 \pm 3 \mathrm{~nm}$ max. $0.31-0.35 \mathrm{~dB} / \mathrm{km}$
	At $1490 \mathrm{~nm} \max .0 .21-0.24 \mathrm{~dB} / \mathrm{km}$
	At $1550 \mathrm{~nm} \max .0 .19-0.20 \mathrm{~dB} / \mathrm{km}$
	At $1625 \mathrm{~nm} \operatorname{max.} 0.20-0.23 \mathrm{~dB} / \mathrm{km}$

tML® - FO Breakout Module MPO/MTP® with Pins/4x LC APC Duplex 9/125 μ OS2, LR4

Attenuation vs. Wavelength	Range: 1285-1330 mm; Ref. $\lambda: 1310 \mathrm{~nm}$; Max. Difference: $0.03 \mathrm{~dB} / \mathrm{km}$ Range: 1525-1575 mm; Ref. $\lambda: 1550 \mathrm{~nm}$; Max. Difference: $0.02 \mathrm{~dB} / \mathrm{km}$
Macrobend Loss	Mandrel Diameter:32mm; Number of Turns: 1; Wavelength: 1550 nm ; Induced Attenuation: $\leq 0.03 \mathrm{~dB}$ Mandrel Diameter:50mm; Number of Turns: 100; Wavelength: 1310 nm ; Induced Attenuation: $\leq 0.03 \mathrm{~dB}$ Mandrel Diameter:50mm; Number of Turns: 100; Wavelength: 1550nm; Induced Attenuation: $\leq 0.03 \mathrm{~dB}$ Mandrel Diameter:60mm; Number of Turns: 100; Wavelength: 1625 nm ; Induced Attenuation: $\leq 0.03 \mathrm{~dB}$
Point Discontinuity	Wavelength: 1310 nm ; Point Discontinuity: $\leq 0.05 \mathrm{~dB}$ Wavelength: 1550 nm ; Point Discontinuity: $\leq 0.05 \mathrm{~dB}$
Cable Cutoff Wavelength ($\lambda \mathrm{ccf}$)	$\lambda \mathrm{ccf} \leq 1260 \mathrm{~nm}$
Mode-Field Diameter	At $1310 \mathrm{~nm}=9.2 \pm 0.4 \mu \mathrm{~m}$ At $1550 \mathrm{~nm}=10.4 \pm 0.5 \mu \mathrm{~m}$
Dispersion	At $1550 \mathrm{~nm}=\leq 18.0[\mathrm{ps} /(\mathrm{nm} * \mathrm{~km})$] At $1625 \mathrm{~nm}=\leq 22.0[\mathrm{ps} /(\mathrm{nm} * \mathrm{~km})$]
	Zero Dispersion Wavelength $\left(\lambda_{0}\right): 1310 \mathrm{~nm} \leq \lambda_{0} \leq 1324 \mathrm{~nm}$ Zero Dispersion Slope (S_{0}): $\leq 0.092 \mathrm{ps} /\left(\mathrm{nm}^{2}{ }^{*} \mathrm{~km}\right)$
Polarization Mode Dispersion (PMD)	PMD Link Design Value $=\leq 0.06 \mathrm{ps} / \sqrt{ } \mathrm{km}$ Maximum Individual Fiber $=\leq 0.1 \mathrm{ps} / \sqrt{ } \mathrm{km}$
Norm	ITU-T Recommendation G. 652 (Tables A, B, C, and D) IEC Specifications 60793-2-50 Type B1.3 TIA/EIA 492-CAAB Telcordia Generic Requirements GR-20-CORE ISO 11801 OS2

Dimensional Specifications

Fiber Curl	$\geq 4.0 \mathrm{~m}$ radius of curvature
Cladding Diameter	$125.0 \pm 0.7 \mu \mathrm{~m}$
Core-Clad Concentricity	$\leq 0.5 \mu \mathrm{~m}$
Cladding Non-Circularity	$\leq 0.7 \%$
Coating Diameter	$242 \pm 5 \mu \mathrm{~m}$
Coating-Cladding Concentricity	$<12 \mu \mathrm{~m}$

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation $1310 \mathrm{~nm}, 1550 \mathrm{~nm} \&$ 1625 nm
Temperature Dependence	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	≤ 0.05
Temperature Humidity Cycling	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ up to $98 \% \mathrm{RH}$	≤ 0.05
Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Operating Temperature Range	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Mechanical Specifications

Proof Test	The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}(0.7 \mathrm{GPa})$.
Length	Fiber lengths available up to $63.0 \mathrm{~km} /$ spool.

trans data elektronik GmbH net. work. solution. made in Germany
tML® - FO Breakout Module MPO/MTP® with Pins/4x LC APC Duplex 9/125 μ OS2, LR4

Performance Characterizations

Core Diameter	$8.2 \mu \mathrm{~m}$
Numerical Aperture	0.14
Zero Dispersion Wavelength $\left(\lambda_{0}\right)$	1317 nm
Zero Dispersion Slope $\left(\mathrm{S}_{0}\right)$	$0.088 \mathrm{ps} /\left(\mathrm{nm}^{2 *} \mathrm{~km}\right)$
Effective Group Index of Refraction	$1310 \mathrm{~nm}: 1.4676$
	$1550 \mathrm{~nm}: 1.4682$
Fatigue Resistance Parameter (nd)	20
Coating Strip Force	Dry: $0.6 \mathrm{lbs}(3 \mathrm{~N})$
	Wet: 14 days room temperature: $0.6 \mathrm{lbs}(3 \mathrm{~N})$
Rayleigh Backscatter Coefficient	$1310 \mathrm{~nm}:-77 \mathrm{~dB}$
(for 1 ns Pulse Width)	$1550 \mathrm{~nm}:-82 \mathrm{~dB}$

Product variants \& accessories

Art.-No.	Description
TML-M04LCAD/MPP09E	tML® - FO Breakout Module MPO/MTP® with Pins/4x LC APC Duplex $9 / 125 \mu$ OS2, LR4
TML-M04LCD/MPP50G3	tML® - FO Breakout Module MPO/MTP® with Pins/4x LC Duplex 50/125 μ OM3, SR4
TML-M04LCD/MPP50G4	tML® - FO Breakout Module MPO/MTP® with Pins/4x LC Duplex 50/125 μ OM4, SR4
TML-M04LCDS/MPP50G5	tML® - FO Breakout Module MPO/MTP® with Pins/4x LC Duplex 50/125 μ OM5, SR4

